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1 Supplementary Materials

This document supplements the main paper with the following:

SPIN dataset creation. (supplements Section 3.1)

Crowdsourcing implementation. (supplements Section 3.1)

SPIN analysis. (supplements Section 3.2)

Benchmarking models’ implementations. (supplements Section 5)

Analysis of model performance based on region size vs. IoU. (supplements

Section 5.1)

6. Analysis of granularity uni/n-gram frequency in Llama training data. (sup-
plements section 5.1)

7. Adversarial prompting experiments for ViP-Llava 13B. (supplements Sec-
tion 5.1)

8. Qualitative results from benchmarked models. (supplements Section 5.1)
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2 SPIN Dataset Creation

2.1 Candidate Subpart Taxonomy

To identify candidate subpart categories for each object-part pair in PartIma-
geNet [10], we prompted GPT-4 |1] with “Please list the canonical subparts of a
<object>-<part>. Only include subparts that are clearly visible and recogniz-
able to a layperson.” The results were the following:

— Quadruped-Head: ears, eyes, nose, mouth, tongue, teeth, whiskers, fore-
head, cheeks, chin

— Quadruped-Torso: shoulders, back, belly, chest, ribs

— Quadruped-Foot (leg): hip, thigh, knee, shin, ankle, foot, toes, claws,
pads, hoof

— Quadruped-Tail: base, midsection, tip

Biped-Head: ears, eyes, nose, mouth, tongue, teeth, cheeks, forehead, chin,

hair

Biped-Torso: shoulders, chest, back, abdomen, waist, hips
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Biped-Arm (includes hand): shoulder, upper arm, elbow, forearm, wrist,
hand, fingers, thumb

Biped-Foot (includes leg): hip, thigh, knee, calf, ankle, foot, toes
Biped-Tail: base, midsection, tip

Fish-Head: eyes, mouth, gills, nostrils

Fish-Torso: scales, lateral line, dorsal surface, ventral surface

Fish-Fin: rays, spines, lobes, base

Fish-Tail: caudal peduncle, caudal fin, upper lobe, lower lobe
Bird-Head: beak, eyes, nostrils, ears, crown, nape

Bird-Torso: chest, belly, back, flanks

Bird-Wing: primaries, secondaries, coverts, alula

Bird-Foot (includes leg): thighs, knees, shanks, toes, talons

Bird-Tail: rectrices, pygostyle

Snake-Head: eyes, mouth, nostrils, fangs, tongue

Snake-Torso: scales, ventral plates, dorsal surface

Reptile-Head: eyes, mouth, nostrils, tongue, teeth, ears

Reptile-Torso: scales, belly, back, sides

Reptile-Foot (includes leg): thigh, knee, ankle, toes, claws
Reptile-Tail: base, midsection, tip

Car-Body: hood, trunk, roof, doors, windows, fenders, bumpers
Car-Tire (includes all of the car wheel): tread, sidewall, bead, rim,
hubcap, valve stem

Car-Side-Mirror: mirror glass, housing, adjustment mechanism
Bicycle-Head: handlebars, stem, fork, front brake

Bicycle-Body: frame, chain, pedals, crankset, gears

Bicycle-Seat: saddle, seat post, clamp

Bicycle-Tire (includes all of the wheel): tread, sidewall, tube, rim,
spokes, hub

Boat-Body: hull, deck, keel, rudder, bow, stern

Boat-Sail: mainsail, jib, boom, mast, rigging

Aeroplane-Head: cockpit, nose, windshield, radome

Aeroplane-Body: fuselage, cabin, cargo hold, doors, windows
Aeroplane-Wing;: flaps, ailerons, slats, wingtips

Aeroplane-Tail: vertical stabilizer, horizontal stabilizer, rudder, elevators
Aeroplane-Engine: turbine, fan blades, exhaust, nacelle

Bottle-Body: main chamber, label, base

Bottle-Mouth: opening, neck, lip, cap

2.2 Final Subpart Taxonomy

As described in the main paper, we manually edited the results from GPT-4 to
finalize the taxonomy. The final resulting taxonomy is as follows (parent objects
listed in bold, followed by each part and its associated subparts):

— Aeroplane — Head: nosecone and windshield. Body: windows, doors, wind-

shield, and decals. Wing: body and flaps. Engine: intake, outer casing, pro-
peller, and cap. Tail: rudder, vertical stabilizer, horizontal stabilizer, and
decals.
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— Bottle — Body: label, shoulder, base, and neck. Bottle-mouth: rim and cap.

— Boat — Body: cockpit, deck, hull, bowsprit, decals, pontoon, and window.
Sail: vertical beam, horizontal beam, decals, and sail.

— Bicycle — Head: handlebars, brake levers, headlight, bell or horn, grips,
mirror, and tassel. Body: seat tube, top tube, down tube, head tube, fork,
chainring, pedals, cranks, suspension, foot rest, stem, fender, axle, light, and
parental control handle. Tire: tire, rim, spokes, fork and hub.

— Biped — Head: eyes, ears, nose, mouth, teeth, forehead, jaw, and neck.
Torso: chest, abdomen, back, and shoulders. Arm: forearm, elbow, upper
arm, wrist, palm, dorsal area, fingers, and shoulders. Foot: toes, heel, sole,
and dorsal area.

— Bird — Head: eyes, beak, nostrils, forehead, neck, and cheek. Torso: breast,
back, and belly. Foot: toes, claws, shank/forearm, thigh, knee, webbing, and
ankle.

— Car — Body: door, window, roof, hood, trunk, bumper, decal, light, siren,
grille, fender, windshield, windshield wiper, license plate, spoiler, exhaust,
roll cage, ladder, plow, seat, hopper, trailer, and spare wheel. Tire: rim, tire,
and hub cap. Side-mirror: mirror glass, housing, and mount.

— Fish — Head: eyes, mouth, gills, snout, and neck. Torso: neck, dorsal surface,
ventral surface, and side. Fin: dorsal fins, pectoral fins, and ventral fins. Tail:
lower lobe and upper lobe

— Quadruped — Head: eyes, ears, nose, mouth, horns, tusk, forehead,
cheek, neck, and snout. Torso: back, chest, belly, side, shoulders, and neck.
Foot: toes/hoof, claws, pads, dorsal area, heel, shank/forearm, knee/elbow,
thigh /upper arm, and wrist/ankle.

— Reptile — Head: eyes, mouth, nostrils, tongue, neck, forehead, ears, casque,
hood, and throat pouch. Torso: shell, belly, side, back, neck and dor-
sal fin. Foot: toes, webbing, pads, shank/forearm, knee, thigh/upper arm,
wrist /ankle, and fin.

— Snake — Head: eyes, mouth, horn, nostrils, tongue, hood, forehead, and
cheek. Torso: belly, back, and rattler.

2.3 PartImageNet Filtering

We removed the 29 images from PartImageNet with only the background class
annotated (i.e., no part annotations) because they couldn’t support subpart
annotation. We also excluded the following six PartlmageNet’s part classes that
have ambiguous subpart decompositions: biped tails, bird tails, quadruped tails,
bird wings, and bicycle seats.

Next, we restricted every PartlmageNet category to include at most 1,200
images by using stratified sampling to preserve PartlmageNet’s original train,
validation, and test split distribution. When sampling, we prioritized images
containing the most parts from the part taxonomy to enhance the amount and
diversity of annotated subpart annotations.



4 Myers-Dean et al.

Instructions & Examples | Fin

fescription of each subpart

Keyboard Shortcuts: (y) yes, (1) no, () next subpart, (o) next part, (+) zoom in, (-) zoom out, (1) reset view
To pan once zoomed, hold down the shift key and drag your mouse.

polygon?

Fig. 1: Interface AMT crowdworkers used to create SPIN’s ground truth annotations.

3 Crowdsourcing

3.1 Annotation Tool

Fig. [1] provides a screenshot of our crowdsourcing interface. We included in its
design zooming functionality to enable more precise boundary annotations for
subparts occupying tiny portions of images.

3.2 Crowdsourcing Implementation

We encouraged high-quality results in multiple ways. First, every annotator had
to complete an initial onboarding task by passing a qualification test with five
challenging annotation scenarios. Afterward, we provided a link to a 25-page
PPT presentation that provided both generic annotation instructions (matching
closely what they already used for their previous object-part annotation task
with our team) as well as task-specific instructions clarifying for each super-
category, textually and visually, how to annotate each subpart. These can be
found at https://joshmyersdean.github.io/spin/index.html. After releas-
ing tasks to AMT, we kept a live dialogue channel open with all annotators
both by answering questions through email as well as via regular open Zoom
sessions that individuals could join to solicit input. To further control quality,
we released tasks to AMT in a phased rollout where we released all tasks for
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a single super-category (e.g., Quadruped, Bicycle) in a series of small batches
before moving to the next super-category so workers could sharpen and retain
skills on each category before moving to the next one. Following the completion
of initial mini-batches per super-category, we manually spot-checked the results
for potential worker confusion and provided individual feedback as needed until
we found no further concerns. Additionally, throughout the annotation process,
we manually inspected suspicious results, such as when workers flagged many
parts and subparts as not being present, had missing subpart segmentations, or
were outliers in the amount of time they took to complete tasks. We replaced
unsuitable annotations as needed in addition to two authors inspecting every
annotation and performing corrections as needed.

Toward’s providing equitable compensation, we based HIT reward amounts
on the maximum number of subparts a worker could encounter when annotating
a particular super category. This design choice addressed the issue that there is
high variation in the number of possible subparts per object category. To de-
termine the pay amount, we conducted in-house testing to find the mean task
duration relative to each super category. We found that paying 10 cents per sub-
part resulted in compensation above the United State’s federal minimum wage.
This rate resulted in compensating workers $1.10 per image for less complex cat-
egories like Boat, which only featured eleven potential subparts, versus $2.80 or
$2.90 per image for more complex categories like Bicycles and Cars, respectively.

4 SPIN Analysis

4.1 Prevalence of Subpart Annotations per Part Category

We next characterize the subparts we augmented to the dataset by comput-
ing the frequency of subpart annotations per part category across SPIN’s 11
supercategories with results shown in Fig.

We also characterize the subparts we augmented to the dataset by computing
the frequency of subpart annotations per part category across SPIN’s 11 super-
categories, with results shown in Fig. [2l We observe that car bodies exhibit the
most subpart annotations per part category. We attribute this finding to the fact
that the car body part category features the highest concentration of subpart cat-
egories (23 subparts) relative to all other part categories in SPIN. Additionally,
the subpart categories within the car body part category, such as door, win-
dow, bumper, decal, and lights, often require multiple annotations per subpart.
We observe similar trends in quadruped, biped, and reptile heads. Although this
part category features fewer subparts than car bodies, they each contain subpart
categories that often require multiple annotations to entirely segment, such as
eyes, ears, nostrils, and cheeks. We also find that many of SPIN’s images relative
to these particular supercategories are biased toward these specific parts as they
are often the principal area of focus in the image. For example, a reptile’s feet
could feature 20 toes and claws, yet a reptile’s feet are unlikely to be the focus
of an image. Last, these part categories also belong to super categories featuring
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Fig. 2: Histogram visualizing the number of subpart-part category occurrences (in
the thousands) across the SPIN dataset spanning each of the 34 part categories. We
note that the biped and quadruped head, and the car body feature the most sig-
nificant number of subpart occurrences within their parent part. (Aero=Aeroplane;
Quad=Quadruped)

1200 images. In contrast, supercategories like aeroplane, bottle, and boat fea-
ture 311, 483, and 559 images, naturally lending them fewer subpart annotations
than bipeds, quadrupeds, and cars.

4.2 Presence of Holes in Subparts

We evaluate the presence of holes within individual subparts in SPIN. For each
subpart, we count how many holes it contains, defined by a polygon embedded
within another.

Overall, we observe a relatively low presence of holes within subparts, with
only 2.86% of subparts containing holes. Cars have the largest proportion of sub-
parts containing holes at 13.54% and bottles have the lowest number of holes at
0.11%. Intuitively, a car contains subparts that naturally have holes, such as tires
(which rims and hubcaps reside within), as well as grilles (which license plates
and headlights reside within). In total, 6/11 object categories contain subparts in
which greater than 1% contain holes: Aeroplane (3.58%), Bicycle (2.76%), Boat
(6.85%), Car (13.54%), Reptile (1.19%), and Snake (4.70%). Of the remaining
5 object categories, all contain subparts with less than 1% having holes: Biped
(0.56%), Bird (0.64%), Bottle (0.11%), Fish (0.12%), and Quadruped (0.54%).

Among all subpart instances containing holes, all have an average of less
than 2. Boat has the highest average at 1.79 holes, and Fish has the lowest
at 1.00 holes. A contributing reason for a scarcity of holes within subparts is
that subparts are the finest level of granularity within an object, and thus other
subparts typically do not reside within a subpart to create a hole.

4.3 Multiple Polygons in Subparts

The prevalence of requiring multiple polygons per subpart is shown with respect
to objects in Fig. [3]

We find that 31.21% (33,188) of subpart annotations have more than one
polygon. In other words, subpart categories belonging to these object categories
contain multiple polygons in the semantic annotations. Most subpart occurrences
requiring multiple polygons occur for biped arms, quadruped and reptile feet,
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Fig. 3: Histogram visualizing the number of subparts (in the thousands) that required
multiple polygons to annotate spanning each of the 34 part categories. We note that
biped arms, quadruped and reptile feet, and car bodies feature the most subpart occur-
rences requiring multiple polygons to annotate. (Aero=Aeroplane; Quad=Quadruped)

and car bodies. We attribute this finding to the intrinsic properties of these par-
ticular subparts and the viewing angle. For instance, the biped arms, reptile, and
quadruped feet often exhibit 5-10 fingers and toes, and reptile and quadruped
feet sometimes feature claws that can require an additional 5-10 polygons. In
addition, car bodies can contain 2-20 windows depending on the vehicle type,
as well as 2 lights and 4 tires, underscoring why this category has the most
significant number of multi-polygon subpart annotations of all object categories.

We next characterize subparts consisting of multiple polygons based on two
metrics: 1) Extent: the ratio of a subpart’s area to it’s bounding box. Values are in
(0,1], where values approaching 0 mean that a contour occupies little area in it’s
bounding box (e.g., a thin diagonal line) and 1 means that a contour is perfectly
contained (e.g., a square).; and Boundary complexity: ratio of a subpart’s area
to the length of its perimeter (i.e., isoperimetric quotient). Values range from
0 (highly jagged boundary) to 1 (circular). For regions consisting of multiple
polygons, we record the mean of each metric for each polygon. We compute the
average of each metric across all constituent polygons in a subpart’s annotation.
Results are shown in Figure

Regarding shape in single—and multi-polygon subpart annotations, the pri-
mary trend we observe is that single-polygon annotations take up the majority of
their bounding boxy. In contrast, multi-polygon annotations tend to only occupy
50% of their bounding box (i.e., Fig. 4| a, b, values closer to 1 compared to b).
Intuitively, single polygons may take up more space as there is less background
captured in the bounding box (i.e., there are less overall background pixels).

We also see a similar trend in boundary complexity, especially in Bicycles, as
their respective inter-quartile ranges get much wider and further away from 0.5
in multi-polygon part annotations compared to single-polygon subpart annota-
tions, ultimately exhibiting moderate albeit more complex boundary complexity
among multi-polygon subpart annotation versus single-polygon subpart annota-
tions (i.e., Fig. 4| ¢, d). We see this trend in bicycles more than in cars because
subparts like tires on a bicycle occupy a more significant portion of the bicycle’s
area compared to a tire on a vehicle, which occupies much less area relative to
the object.
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Fig. 4: Subpart extent and boundary complexity relative to the number of polygons
required to segment the subpart, grouped by their respective super categories.

5 Model Benchmarking

5.1 Design of Benchmarked Models

For each benchmarked model, we report the number of parameters, visual en-
coder, LLM (i.e., text encoder), capabilities, and model source for inference in
Table |1} For SAM [12]|, we adopt the commonly used ViT-H [8] variant. For
models producing bounding boxes, we post-process predicted object detections
for each semantic category by converting them into a single pixel-wise mask to
create a semantic segmentation.

We also report the specific prompts used for each model, as they vary with
each model’s official implementation. For objects, <region> is the name of the
object (e.g., quadruped, antelope) and for (sub)parts, <region> is the name of
the (sub)part and the object (e.g., eyes of the quadruped, eyes of the antelope).
We use the same prompts for models that have both 7B and 13B variants (Ferret,
LISA, PixelLLM, ViP-Llava).

Open-Vocabulary Localization Prompts.

— Ferret: “Please locate the <region> in this image. Only locate the <part>
but locate all instances of the <part>.” We omit the second sentence when
doing object-level localization.

— CoGVLM: “Please describe the <object> in detail and provide its coordi-
nates [[x0, y0, x1, y1]].”

— Shikra: “Can you point out <region> in the image <image> and provide
the coordinates of its location?”” Where <image> is the tokenized image.

— Kosmos2: “<grounding><phrase> the <region> < /phrase>"

— LISA: “Please segment the <region> in this image.”

— GLaMDM: “Please segment the <region> in this image.”

— PixelLLM: “Please segment the <region> in this image.”

Interactive Understanding Prompts.

— Kosmos2: “<phrase>Is there a <region> in the image? Think step-by-
step.”
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1: Overview of benchmarked foundation models with respect to their pa-
rameters, encoder types, LLM, task capabilities, and model source. (B=billions;
M=millions).

— Ferret: “Is this <mask><pos> a <region>7 Only answer yes or no with no
other output.” Where <mask><pos> is the tokenized mask with positional
encoding.

— Osprey: “Is this <mask><pos> a <region>7 Only answer yes or no with no
other output.” Where <mask><pos> is the tokenized mask with positional
encoding.

— Ferret: “Is this <mask><pos> a <region>7 Only answer yes or no with no
other output.” Where <mask><pos> is the tokenized mask with positional
encoding.

— ViP-Llava: “Is there a <region> in the blue region? Answer yes or no.”
Where “blue region” is the overlayed ground truth segmentation mask of the
region.

— Shikra: “For this image <image>, I want a simple and direct yes or no
answer to my question: Is there a <region> in this region <boxes>?" in
which <image> is the tokenized image, and <boxes> is the ground truth
bounding box.

5.2 HIPIE Analysis

Despite poor localization from HIPIE, it is worth noting that HIPIE has interest-
ing hierarchical performance results. First, it achieved nearly perfect spatial con-
sistency between parts and objects (i.e., SpCS-P20) and perfect spatial consis-
tency between subparts and parts (i.e., SpCS-S2P). In other words, when HIPIE
predicted parts are always perfectly contained within their parent parts which,
in turn, are typically perfectly contained within their parent objects. When ex-
amining HIPIE’s semantic consistency with SeCS metrics for general and specific
categories, we find ResNet-50 outperforms ViT-H for general categories (85.85%
vs. 73.38% SeCS) despite ViT-H’s higher object mIoU. This suggests that ViT-
H’s increased computational power does not enhance part/subpart accuracy, but
rather only object-level performance. ViT-H also shows a higher abstention rate
from subpart predictions (i.e., does not predict segmentations) than ResNet-50
(35.77% vs. 24.71%). For specific categories, both backbones score high on SeCS
(94.58% for ResNet-50 and 100% for ViT-H) but abstain 84% of the time, likely
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due to the large, similar specific category list (154 specific vs. 11 general cate-
gories), highlighting issues like differentiating ‘box turtle’ from ‘mud turtle’ in
specific categories. In contrast, all labels in the general categories share little
similarity.

Object Part Subpart
Model R? p-value R? p-value R? p-value
HIPIE R50 0.00 0.00 0.00
HIPIE ViT-H 0.00 0.00 0.00
PixelLLM 7B [19] 0.00 0.67 0.44
PixelLLM 13B [|19] 0.00 0.67 0.37
LISA 7B [13] 0.04 0.63 0.28
LISA 13B |13] 0.01 0.62 0.49
GLaMM [18] 0.01 0.55 0.35
Ferret 7B [25] 011 0.64 028
Ferret 13B [25| 0.04 0.65 0.35
CoGVLM [23] 0.05 0.01 0.10
Shikra [4] 0.07 0.04 0.20
Kosmos2 [16] 0.07 0.76 0.36

Table 2: Impact of size on predicting IoU for open-vocabulary localization models. We
report Pearson R? coefficients and p-values. Blue cells represent statistically significant
results for A1 in IoU ~ B, log(region size)—i—Bo (p < 0.001), and orange represents results
that are not statistically significant. Above the dashed line represents segmentation
models, and below represents models that output bounding boxes.

6 Analysis of Region Size vs. IoU

To examine the influence that region size has on segmentation results, we ran a
linear regression, IoU ~ Bl log(region size) + 307 and calculated the Pearson R?
correlation coefficients for each model at every granularity level, also noting the
median p-value of 3 to assess the significance of region size on IoU performance.
Results are shown in Table 2l We include HIPIE in the table but exclude it in
our discussion as its poor results skew trends.

Overall, we observe mixed outcomes. No significant positive correlation is
observed for objects, with Pearson correlation R? values between 0.003 and 0.105
(median p-value ~ 0.009), suggesting that an object’s segmentation size does not
strongly predict IoU scores. Conversely, a positive correlation is noted for parts,
indicated by R? values ranging from 0.014 to 0.759 (median p-value ~ le—10),
implying that larger parts may correspond to higher IoU scores, depending on
the model. Subparts show a weaker positive correlation, with R? values from
0.102 to 0.491 (median p-value a 2e—20), highlighting that while segmentation
size impacts performance, it is not the predominant factor.
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7 Analysis of granularity uni/n-gram frequency in Llama
training data

Given the proprietary nature of Llama’s training data, we utilize RedPajama 6],
a 1.4 trillion token corpus designed to closely replicate Llama’s dataset, as a
stand-in. We use the Llama tokenizer for tokenization and examine occurrences
of uni-grams across three categories: subparts (N = 206), parts (N = 40),
and objects (N = 11). We leverage the co-gram [15] API for counting these
occurrences within the RedPajama dataset. We observe decline in average uni-
gram occurrence frequency when increasing granularity (e.g., part to subpart).
This trend is depicted in Fig. Ph. Further analysis of parts and subparts n-
grams (Fig. ) reveals that subpart n-grams (e.g., ‘eyes of the quadruped’) are
significantly less frequent, with an average of 7 instances, compared to parts
(e.g., ‘head of the quadruped’), which average 75 instances.

%o Distribution of Uni-Gram Occurrences Distribution of N-Gram Occurrences
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Fig.5: (a) Distribution of uni-gram (e.g., quadruped, head, eyes) across the RedPa-
jama dataset for objects, parts, and subparts. (b) Distribution of n-gram (e.g., head
of the quadruped, eyes of the quadruped) across the RedPajama dataset for parts and
subparts. We show a log scale to account for wide-range values.

8 ViP-Llava Adversarial Prompting

We conducted two different adversarial prompting experiments for ViP-Llava
13B to better understand its near-perfect performance on interactive under-
standing. First, we conducted an adversarial experiment where we prompted the
model the same way as the original experiment but randomly swapped out the
object category for a different one among our set of object super-categories. As
a consequence, the answer to the question, "Is there an <object> in this
<region>7" is always ‘no.” We observe for this experiment that within object
categories, mean accuracy decreases to 73.26% (-25.07pp) for objects, 98.08%
(-1.82pp) for parts, and 96.62% (-2.73pp) for subparts. These findings suggest
that the inclusion of granular phrases (e.g., cheek) can help calibrate a model’s
confidence and reduce hallucinations, potentially due to the intrinsic associa-
tions it may make (e.g., recognizing that a bicycle does not have a cheek).
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Second, we prompted the model with the negation of the original prompt, "Is
there not an <object> in this <region>7", in which the answer is always
‘no’. Overall, we observe large decrease in performance with a mean accuracy
of 28.36% (13.65% specific) for objects, 3.23% (7.33% specific) for parts, and
4.74% (4.17% specific) for subparts. This big difference in performance from
the results in the main paper reinforces findings from prior work that models
struggle with negation |2]. Moreover, these results highlight the importance of
adversarial prompting and red-teaming foundation models to probe their biases
(e.g., through tools like VLSlice [20]), such as a predisposition to answering yes
to content that is not present within an image.

9 Qualitative Results

9.1 Foundation Model Results

Qualitative results for open-vocabulary object localization models are shown for
5 diverse examples in Fig. [6] (segmentation) and Fig. [7] (object detection). We
show examples for tiny subparts (i.e., eyes of the snake, nostrils of the bird) and
large subparts (i.e., horns of the quadruped, neck of the bottle, grille of the car).

For models capable of segmentation (LISA 7/13B, PixelLLM 7/13B,
GLaMM), varied results are observed across examples. LISA 7B localizes snake
eyes most accurately, while others locate the entire head or body portions. No
model precisely segments bird nostrils, with the closest attempts segmenting
the beak. Only LISA variants perfectly segment antelope horns without addi-
tional regions. For the grille, GLaMM provides the best segmentation, albeit
with missing cruft. Regarding the bottleneck, LISA 13B achieves near-precise
segmentation (aside from the inclusion of the shoulder), whereas other models
either segment partial regions (LISA 7B, PixelLLM 7/13B) or all regions except
the main label on the bottle (GLaMM).

For models that produce bounding boxes (CoGVLM, Ferret 7/13B, Shikra,
Kosmos2), relatively consistent results are observed across examples. CoGVLM
precisely locates tiny subparts (eye, nostril), while others produce shifted or
object-encompassing bounding boxes. For larger regions (grille, horns, neck), all
models except Shikra correctly localize antelope horns, and all except Kosmos2
accurately locate the car grille. Conversely, Shikra provides the closest bounding
box for the bottleneck, with other models only capturing partial or complete
bottle regions.

Overall, these results support our quantitative findings, with all models gen-
erally performing poorly on subpart localization. Overall, CoGVLM produces
the best results, aligning with its superior quantitative performance.

9.2 HIPIE Results

Qualitative results for predicted subparts by HIPIE are shown in Fig. (a)
Shows a partially correct segmentation of bicycle handlebars, with incorrect
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labeling of the rest as “fender”. (b) Demonstrates an out-of-distribution sam-
ple with incorrect labeling. (c) Exhibits a small number of correct class labels
(“door” and “tire”) but with inaccurate segmentations. (d) Displays a semanti-
cally incoherent combination of “bird back” and “fish eyes”, highlighting the need
for holistic evaluation of granular segmentations (e.g., our proposed consistency
scores). Overall, these poor results corroborate the quantitative findings reported
in the main paper.

Eyes of
the Snake

Nostrils
of the
Bird

Horns of
the
Quadruped

5
Grille of
the Car

Neck of the
Bottle

GLaMM Pixel LLM Pixel LLM LISA 13B LISA 7B
13B 7B

Fig. 6: Qualitative results of models producing segmentation predictions, shown in red.
Each row represents a different subpart. Columns display, from left to right: ground
truth segmentations, followed by predictions from each method. For visualization pur-
poses, all images are resized to square aspect ratios.
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Eyes of
the Snake

Nostrils
of the
Bird

Horns of
the
Quadruped

Grille of “ 3
the Car

Neck of the
Bottle

GT CoGVLM Ferret 13B Ferret 7B Shikra Kosmos2

Fig. 7: Qualitative results of models producing bounding box predictions, shown in red.
Each row represents a different subpart. Columns display, from left to right: ground
truth bounding boxes, followed by predictions from each method. For visualization
purposes, all images are resized to square aspect ratios.

Fig. 8: Qualitative results from HIPIE, with each panel showing all predicted segmen-
tations with their corresponding label classification depicted in the same color. For
visualization purposes, all images are resized to square aspect ratios.
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